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Abstract. Antiferromagnetism on  the face-centred cubic lattice is frustrated. The different 
competing spin arrangements are degenerate in the classical limit of the Heisenberg model. 
We consider, quantum-mechanical spin fluctuations, using the Holstein-Primakoff trans- 
formation. as a perturbation to lift this degeneracy and find that the collinear spin arrange- 
ment is stabilised. When we consider the inclusion of paramagnetic impurities, however, we 
find that non-collinear arrangements are locally preferred. We suggest this scenario as a 
possible explanation for the fact that manganese, when quenched in a face-centred cubic 
lattice, can be driven from a collinear to non-collinear spin arrangement by doping with 
either nickel, iron or iridium. 

1. Introduction 

A lot of effort in the field of ‘frustrated’ antiferromagnetism has gone into finding the 
physical characteristics of different multiple spin-density wave (MSDW) states [ 11 and 
then designing and performing experiments to try to differentiate between the exotic 
MSDW and domains of collinear antiferromagnetism [2]. In this paper we will not be 
concerned with the physical properties of the different MSDW but we will ask questions 
about which physical effects tend to stabilise the different spin arrangements. In par- 
ticular we will consider the effect of atomic impurities. 

There are two main classes of systems that we will consider; first, localised systems 
typified by the actinides, USb [ 3 ]  and UOz [4], and the lanthanides, CeAs [5] and CeSb 
[6]; and secondly, itinerant transition-metal systems, i.e. manganese alloys quenched 
into a face-centred cubic structure, Mn,-.Ni, [7], Mnl-,Fe, [SI and Mn, -JrX [9]. 

For the localised systems the magnetic atoms are well separated and interact weakly 
through a mixture of superexchange and RKKY processes. The fact that the atoms are 
‘heavy’ yields strong spin-orbit coupling effects and the induced charge component then 
interacts strongly with the crystal field. The particular arrangement of ‘spins’ for these 
systems seems likely to be decided by the crystal structure and in particular by the 
position and charge of the surrounding ‘passive’ atoms. The problem we wish to address 
here is the following: In the absence of these crystal-field effects, what are the likely 
consequences of substitutional atoms replacing magnetic atoms on the choice of MSDW 
for the system? 

For the delocalised, transition-metal systems, the physical picture is very different. 
The spin-oirbit coupling effects are minor (yielding a 4 meV gap in a 100 meV spin- 
wave dispersion [ lo], for example) and so one has more confidence that charge does not 
play a dominant role. In this context our modelling will suit these systems more than the 
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localised systems. The transition metals can be modelled using a spin-polarised band 
structure, and the self-consistently chosen moments deduced from these calculations 
[ll] agree fairly well with the 2 . 0 , ~ ~  experimentally determined [12] for the manganese 
atom in a face-centred cubic lattice. With this degree of success, one can ask whether 
the band structure contributions break the degeneracy between different MSDW states 
that is found in a simple Heisenberg description. The degeneracy is broken by such 
effects and various authors have pointed this out 1131. 

The similar problem of ordering of nuclear spins on a face-centred cubic lattice has 
previously been studied [14]. The physical source of the interaction is very different 
since the nuclei are effectively distinguishable and cannot move on the relevant energy 
scales. This precludes exchange and superexchange, which are the dominant physical 
effects in our systems. It is worth noting that when the RKKY interaction dominates, 
these treatments predict collinear arrangements in agreement with our conclusions. 

Manganese alloys exhibit various structural phase tranitions as a function of alloy 
concentration while they are in the antiferromagnetic phase [15]. The most natural 
explanation to this observation is that the type of MSDW changes as a function of alloy 
concentration [16]. Attempts to predict the lattice distortion induced by the large 
magnetoelasticity in these systems [17] agrees fairly well with the observed distortions, 
experimentally of order 5% [IB]. Further, a neutron scattering analysis of the elastic 
magnetic scattering through such a transition [ 191 yields fairly conclusive proof that the 
magnetism takes an active role in these transitions. Can the band structure effects explain 
a change in MSDW behaviour? If one associates alloy concentration with band filling, 
then one can readily model a sequence of phase transitions in good agreement with those 
observed in Mn, - rNi, [20]. 

It is the assumption of a direct relationship between alloy concentration and band 
filling that we wish to analyse in this paper. The nickel atom has three more electrons 
than the manganese atom and so at a superficial level it would seem that the main effect 
of alloying nickel into manganese would be to raise the chemical potential. This is 
precisely the motivation behind the band filling explanation for the changes in MSDW 
behaviour. We would like to point out a couple of facts that might undermine confidence 
in this explanation. 

First, a diffuse neutron scattering experiment has shown that the moment on the 
nickel sites is small [21], The nickel atoms behave more like paramagnetic impurities 
than simple electron donors. Secondly, most of the alloys have become cubic by 25% 
doping. Careful studies of order in the alloys show a tendency for the atoms to order in 
a Cu3Au structure. Indeed, some care must be taken because the ordered alloy is 
thermodynamically relatively stable. The cubic antiferromagnetic phase has four atoms 
per unit cell and the ordered alloy replaces one sublattice with paramagnetic impurities. 
The collinear phase has only two atoms per unit cell and so one sublattice would become 
diluted by 50% in the ordered alloy. For the cubic antiferromagnetic phase in the ordered 
lattice, it is easy to maintain antiferromagnetism by relaxing the spins into a coplanar 
arrangements (see figure l ) ,  maintaining a unique manganese site. For the case of MnJr 
one finds an increase in the Nee1 temperature for the ordered state over the disordered 
state, suggesting that the ordered antiferromagnetism in the Cu,Au structure is ‘more’ 
ordered than the corresponding disordered alloy antiferromagnetism and as such might 
be ‘locally’ a good picture for the preferred ordering of the disordered alloy. For the 
collinear arrangement, the ordered alloy would find two distinct manganese sites and the 
two sites would require quite contrasting spins in order to maintain antiferromagnetism. 
Can this ‘ease of relaxation around impurities’ be a driving force behind the formation 
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Figure 1. The top two diagrams are the MSDW spin arrangements with three equal- 
amplitude spin-density waves. The lower two diagrams are collinear arrangements. The 
antiferromagnetism can only be maintained in the final diagram by postulating two distinct 
manganese sites. 

of a non-collinear spin arrangement? 
The main purpose of this paper is to analyse paramagnetic impurities in face-centred 

cubic antiferromagnets and to find out which of the MSDW states they favour energetically. 
In § 2 we look at the classical limit of the Heisenberg model, a situation applicable to 
high-spin localised systems. In 9 3 we look at the spin arrangements on the Cu,Au lattice 
for this high-spin limit and in 8 4 we look at the weak-coupling solution to the one-band 
Hubbard model, a very simple model for delocalised electrons. In § 5 we conclude. 

2. The classical limit of the Heisenberg model 

We consider the Heisenberg model with nearest-neighbour antiferromagnetic coupling: 

H = JZ si - si. 
(ii ') 

where (ii') denotes two nearest-neighbour sites and S,  is a spin operator. The limit we 
take is the classical limit where the length of the spin is large. The manganese atom has 
a moment of 2 . 0 ~ ~ ~  which is not very large, and being a rather delocalised system, the 
moment on an atom can also fluctuate in length. The results from the classical limit are 
more important from the point of view of physical ideas than they are quantitatively 
useful. 

The classical limit simply chooses the minimum energy configuration for fixed spin 
lengths, optimising over their individual directions. We take the Fourier transform of 
the spins: 

(2.2a) 

(2.2b) 

where N is the number of atoms in the lattice. In this basis the Hamiltonian becomes 
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where Xis the number of nearest-neighbour atoms. We are assuming a centrosymmetric 
lattice (viz. S - k  = S; ) and 

Y k  = ( I / X N )  exp[ik. ( R ,  - R , , ) ]  (2.4) 
(ri') 

is the structure factor for the lattice in question. Finally we have the constraints on the 
length of the spins, which become 

S2N6,,o = 2 S k + q + G  ' s ;  (2.5a) 

where G is a reciprocal lattice vector, and so the combinations of different Fourier 
components are orthogonal, while at q = 0 we find 

Gk 

(2.5b) 

which yields a normalisation for the sum of moduli. 
The minimum energy solution is that where the only non-vanishing Fourier com- 

ponents are those for which the structure factor is minimised. The solution therefore 
reduces to finding the set S2 of points where this minimum value of the structure factor, 
ymin = minimum{y,: q E Brillouin zone}, is obtained, viz. 

R = { k :  y k  = Ymin}. (2.6) 
We can build various degenerate ground-state solutions from the Fourier components 
corresponding to different points in S2, subject to the above orthogonality constraints. 
The structure factor is obviously bounded below by - 1 and achieves this value in systems 
that are not antiferromagnetically frustrated. The set R usually contains only one point 
in unfrustrated systems, and this becomes the Q for any antiferromagnetic order at low 
temperatures. This Q being essentially unique, we usually find a non-degenerate ground- 
state manifold up to the usual trivial choice of quantisation direction for the moment. 

For frustrated system S2 contains more than one point and can be quite large. For 
the two-dimensional triangular lattice, we find that the minimum structure factor is -4 
and this is achieved at two reciprocal space points. The classical ground state has a non- 
trivial degeneracy which is associated with the 'chirality' of any triangle of spins [22]. 
The case of interest here is the face-centred cubic lattice where we find that 

2 n  2 n  2 n  2 n  2 n  
a a a a a (190, x), - (1, x, 01, - (x, 1, O), - (0,1, x ) ,  - (0, x, l), - ( x ,  0, 1) : 

where the minimum value for the structure factor is -4. The ground state is multiply 
degenerate and includes types I and I11 antiferromagnetic ordering as particular cases. 

In manganese, type I ordering is observed, so we will restrict attention to states of 
this form: 

(2.8a) 

with the three vectors S ,  being averages of two of the spins in the unit cell, So and S,, 

Si = SI COS(Q~ .Ri) + 32 COS(Q~ *Ri) + S ,  COS(Q~ . R , )  
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viz S ,  = h(So + S , ) .  These vectors are related directly to magnetic neutron scattering 
intensity at the reciprocal space points Q ,  + G with1 CC 1 $ , I 2  and satisfying the constraints 

s, * Sa' = S,,'S2, (2.8b) 

I: s2, = s2 ( 2 . 8 ~ )  

* -  

a 

and associated with the three distinct points in Q: 

(2.8d) 

Associated with these three values of Q,, there is a large degeneracy for the anti- 
ferromagnetic ground state. Subject to the orthogonality constraints (2.8b, c ) ,  the three 
vectors S ,  can take any values and to each choice corresponds a distinct spin arrange- 
ment. The terms MSDW corresponds to when more than one s, is non-zero. The object 
of our calculation is to determine how this degeneracy is broken by quantum-mechanical 
fluctuations in two cases: first, in the pure lattice and, secondly, in the presence of a 
paramagnetic impurity. 

In the classical limit, fluctuations are best described by the Holstein-Primakoff 
transformation about the classical spin directions. A spatial frame is chosen on each site 
with the classical spin in the z direction. The spin operators are then expanded as 

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

in terms of bosonic operators by which create spin fluctuations. We proceed by per- 
forming perturbation theory, treating the spin fluctuations as a perturbation. The classi- 
cal vacuum satisfies b, IO) = 0 and so 

(2. loa )  

(2. lob) 

with 2, = (1 /d2 ) (&,  + ig2). 
So far we have considered an isolated spin in terms of its own natural quantisation 

frame. If we now consider a single global frame, then for each site we need a rotation 
matrix Rp"' which transforms us into the correct local frame for the atom: 

s,lO) = ( m b : ,  m i b : , S ) I O )  

s, IO) = SIO)&, + f i b :  IO)&+ 

3, = RFIS,. (2.11) 

In this representation the Hamiltonian becomes 

(2.12) 

HIO) = JS2 &TR;1Ri,&310) + 2 J S d / s E  & ~ R ~ ' R i , & + b l , l O )  
(i i ' )  (ii ') 

+ JS  I: &~R;1Ri ,&+btb~810) .  (2.13) 
(ii ') 

The first term is the classical energy. The second and third terms are quantum 
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fluctuations about the classical ground state. If we break the lattice up into the four 
natural sublattices, then there is a quantisation direction for which four rotation 
matrices, which are the identity and then rotations through 180" about each of the 
three lattice directions, map the spin at the origin onto the spins on each of the other 
sublattices. Combining these rotations with a rotation independent of site, to put the 
classical spin along the z axis, we have a representation for which the symmetries of 
type I antiferromagnetism are manifest. Our first observation is that if we take one 
element from each of the four sublattices then 

3 

2 R,=O (2.14) 
,=O 

and so 

JS2 2 & ~ R ; ' R 1 ~ d 3 ~ O )  = -JS'$NXIO) 

2 J S V 3  2 dTR,'R,,$+b; 10) = 0 

( 2 . 1 5 ~ )  

(2.15b) 

which yields the classical ground-state energy and a stability criterion for that ground 
state, respectively. Note that there is a hidden factor of 2 because each bond is included 
twice. 

We are now in a position to determine the quantum fluctuation-induced de- 
generacy-breaking contribution, which arises from the third term in (2.13). To the 
order to which we are working, the energy of the single spin fluctuation is AXJS and 
the two fluctuations are effectively 'independent', only being coupled at a higher 
order, so 

6E2 = -[3/(2XJS)]  2J2S2/dT+R;1R, ,d+/2 
( 1 8 ' )  

( 1 1 ' )  

( 1 1 ' )  

3 

= -JSN IXTT,XI2 
a= 1 

where X = R&+ is the uniformly rotated displacement and T,  are 
rotations. We find 

6E2 = -JSN[4(lx1l4 + 1 ~ 2 1 ~  + 1 ~ 3 1 ~ )  - Ix: + X: + x;l2] 
and performing the complex analysis and using X * X = 0 we obtain 

(2.16) 

the three 180" 

(2.17) 

6 E ,  = -JSN(l  - 2 sin2 0 cos' 0 - 2 sin' qi cos' q sin4 0 )  (2.18) 

which is the largest energy gain for the collinear arrangement at 6 E ,  = -JSN and the 
smallest energy gain for the cubic spin arrangement at 6 E 2  = -4JSN. We find that 
the quantum fluctuations favour the collinear arrangement. 

Now let us turn to the main topic of this section, having gained a result for future 
use in comparison. What MSDW state does a paramagnetic impurity prefer? In order 
to try partially to answer this question, we may take out one of the spins and determine 
the perturbative local distortion in the spin arrangement using an identical spin 
fluctuation technique to that of the above argument. 

The perturbation is now the decoupling of the impurity spin from its neighbours: 

(2.19) 
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where the impurity site is assumed at the origin and the neighbours are now ordered. 
Applying this operator to the ground state yields 

(2.20) 

The first term yields the loss of magnetic energy due to the impurity site. The 
second term vanishes as it did for the previous calculation because the field from the 
surrounding spins is parallel to the spin and so orthogonal to the fluctuations. The 
third term does not necessarily vanish and yields the leading-order correction. For 
spin fluctuations on the sites neighbouring the impurity, the field from its neighbours 
is now missing a contribution from the impurity. The local field is not necessarily 
parallel to the spin and so the spin can move in order to benefit from it. 

The perturbative contribution is simply 

6E2 = (6 /XJS)  J 2 S 3  Id?R;lRi&+ l 2  
[Oil 

3 

= 2 J S 2  2 IYTT,XI2 
LY= 1 

(2.21) 

where Y = Rd3 is the uniformly rotated classical spin direction. Performing the complex 
analysis and using X - Y = 0 we obtain 

6E2  = -2JS2 sin2 0(cos2 0 + sin2 cp cos2 Q, sin2 0)  (2.22) 

which has the same angular dependence as the previous result (2.18),  as it must have 
from symmetry arguments. We find no energy saving for the collinear case and a 
maximum energy saving for the cubic case at 6 E 2  = -3Jp. Before we go on to 
compare these two results, we should say a little about the limitations of this per- 
turbative approach. 

The energy scale for the perturbative impurity calculation is not small. Indeed, we 
find an energy on precisely the same scale as the unperturbed result. This is symp- 
tomatic of the fact that the spins move through finite angles in the vicinity of the 
impurity and no perturbative calculation can deal effectively with this fact. We know 
that the spin order will be changed at large distances by the impurity because it breaks 
the classical MSDW degeneracy. This is the reason we are restricted to performing 
simple perturbative arguments rather than solving the true classical problem. 

We are, however, led to a rather instructive argument which has earlier been 
presented to compare ‘thermal fluctuations’ with ‘impurity dilution’ [23].  If all the 
spins are collinear, then all the local fields induced on a site are collinear. Since 
perturbative spin fluctuations are orthogonal to the spin direction, the only way one 
can get a linear change in energy from a perturbation is to introduce a perturbative 
field that is not parallel to the spin direction. For the case of a paramagnetic impurity, 
a spin extracted needs to be non-collinear to a spin that it couples to in order to give 
a first-order change in energy. 

So far we have treated the quantum fluctuations associated with the impurity 
potential. The impurity breaks the degeneracy at the classical level and this is the 
more fundamental problem. Although we cannot solve this problem, further evidence 
for the ground state can be found from a ‘cluster’ calculation. 
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We replace the spin at the origin with a spin in the same direction but of reduced 
magnitude, K S .  The surrounding nearest-neighbour spins to the origin are then allowed 
to relax in such a way as to minimise the classical Heisenberg energy. The spins outside 
this cluster take up one of the different MSDW spin arrangements where the sublattice 
spins satisfy So + S1 + S 2  + S3 = 0.  Although the spins in our cluster will be in equi- 
librium, the spins neighbouring the cluster may not be. We will make one further 
assumption, namely that all the spins that are on the same sublattice belonging to the 
cluster are parallel. We are left to find the three variable spins, T1,  T2 and T3,  for the 
three sublattices found in the cluster. 

The change in energy around the cluster is 

A H = ~ J ~ S , * ( K T ,  - S , ) + 2 J z S l * ( T ,  - S , )  
[OI 1 [Iil 

(2.23) 

where j is an index running over the cluster and i is an index running over the 
neighbours of the cluster. 

Minimising the energy subject to the constraints that the spins Ti are of fixed 
magnitude, we find 

- U(KS" + S i  + 2 Ti, = (-1)(1 + pj)4JTj  (2.24) 
d A H  F . = - -  

I dT, liil M'I 
where p j  are Lagrange multipliers to ensure the constraints. 

We can rewrite this problem as 

and hence solve it to find 

(2.25) 

(2.26a) 

A = 4'14u2P3 + P2,'3 + P 3 P 1  + PIP2. 

arrangement. 

direction and then from the normalisation we find that T,  = S ,  and 

(2.26b) 

We consider two cases: first, the collinear arrangement and, secondly, the cubic 

For the collinear arrangement we see that the TI must be parallel to the quantisation 

(2.27) 

For the cubic spin arrangement we find that the cubic point-group symmetry is 

A H  = 8JS2(1  - K ) .  

maintained about the impurity and so = p l  and 
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N. 10 - 
Vl 
2 

1 2 

- 

-_  -.-._, 
.. 

T~ = (l/pu)si + ~2 - p - ~ K ) / ~ P U ( C L  + 311s~ (2.28) 

where from the magnitude we find 

p 4 + 6 p 3  + ( % - 5 ~ / 6 - ~ ~ / 4 ) p ~  - Y p - 8 = 0  (2.29) 

and the non-collinear change in energy satisfies 

AH = 8JS2[6(1 - p)  + (8/p2)(1 - p 2 ) ] .  (2.30) 

We plot the two energies as functions of the impurity spin magnitude in figure 2. 
We find that the non-collinear spin arrangement is relatively stable and yields a saving 
of 1.47JS2 over the collinear arrangement as the impurity spin vanishes. This is a 
variational estimate and as such yields a lower bound on this energy. 

We can find out the degree of local distortion about the impurity by calculating 
the angle through which the cluster spins relax. If we consider the four atoms in a unit 
cell (see figure l), then we have calculated the angle that a spin makes with the plane 
containing the three atoms not at the origin. For the Cu3Au arrangement this angle 
would vanish, which acts as a benchmark. This quantity, 8, given by 

(2.31) 

is also plotted in figure 2 ,  and we find that the spins cant over to a significant degree. 
Now let us compare the two results we have derived. The energy scale upon which 

quantum fluctuations stabilise the collinear arrangement is JSN. The energy scale 
upon which a classical paramagnetic impurity stabilises a non-collinear arrangement 
is JS2.  If the concentration of independent impurities were greater than or less than 
1/S, we would expect the non-collinear or collinear states to be stable respectively 
from this argument. For the case of manganese, where the spin is 2.0pB, we would 
require a sizable fraction of impurities. Although this simplistic argument breaks down 

sin 8 = (5 + 3 ~ ) / 6 ( p  + 3 )  
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for high concentrations of impurities, not to mention the fact that the modelling 
assumptions are dubious for manganese, doping levels of 20% are experimentally 
required to drive the materials non-collinear. 

3. The classical limit for antiferromagnetism in the Cu,Au structure 

In this section we look at the classical limit of the Heisenberg model where the lengths 
of the spins are identical on each of the four cubic sublattices but can disagree on 
different sublattices. A special case of this is where three sublattices have identical 
moments and we have the Cu,Au structure. 

We must make the sublattice label manifest and so we set R,  = R, + c,, where the 
label j runs over a cubic sublattice and c, are the sublattice vectors in the face-centred 
cubic zone. In real space we have 

H = J ~ S ~  ‘s,. (3. la)  
( 1 1 ’ )  

subject to the constraints 

s i f f  . s  la =SA?,. (3 .  l b )  

Analogous to the treatment in Q 2, we make a transformation into reciprocal space 
to find 

Y k l  Y k 2  Y k 3 l  

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

are the relevant structure factors, and the structure factor for the face-centred cubic 
lattice is 

Y k  = Y k l  + Y k 2  -k Y k 3 .  

The solution to this problem depends strongly on the degeneracy of the An.  The 
minimum energy solution is usually found at a unique kin reciprocal space and satisfies 

(3.3a) 

and usually k = 0 and then also 

so, * so, = (N/4)S%’,. (3.3c) 
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There is one situation where this k is not unique and this is when two pairs of sublattices 
have identical total moments. For the case h ,  = A I  and A 2  = A 3 ,  we find solutions along 
( k ,  0,O). These solutions correspond to the degeneracies observed in the face-centred 
cubic lattice and are subject to the constraints Sw 4- S k l  + s k 2  + Sk3 = 0, which explains 
the extra phases in the description involving the larger Brillouin zone of the previous 
section. The only case where the solution is not a simple antiferromagnet is where 
one spin (So say) has a very large moment A. > A I  + A 2  + A,  and then it is not possible 
to achieve antiferromagnetism with this unit cell. 

If we restrict attention to the origin in reciprocal space, then we restrict attention 
to states that tend continuousiy onto type I antiferromagnetism. Since this is the 
symmetry of our experimental systems, we will make this assumption. 

For the case of Cu3Au structure, we find that the lattice is still frustrated since the 
three ‘Cu’ sites in a unit cell are all nearest neighbours and as such form the equilateral 
triangle used in the standard frustration argument. The ground state has only the 
constraint that the total moment vanishes, and is hence antiferromagnetic. There are 
still three degenerate spin-density waves corresponding to the three for the face- 
centred cubic system. For the Cu3Au structure, however, there is no longer a collinear 
solution and therefore independent superposition of the spin-density waves using the 
three spatial dimensions is no longer trivial. Any neutron scattering is still related 
directly to the s, = &(So + S,)  by I x lSiy12. We now find the result that none of the 
magnetic Bragg spots can vanish when A. # AI = Az = A3.  The antiferromagnetism in 
a Cu3Au structure must be a MSDW state, although the relative amplitudes of the spin- 
density waves can be quite different. For the case when the ‘Au’ sites have para- 
magnetic ‘impurities’, viz. A. = 0, we find that the three amplitudes are equal for the 
three spin-density waves and we have the state corresponding to the cubic spin 
arrangement, 

For the solution continuous with the collinear spin arrangement, we find a loss of 
both translational and point-group symmetry. For the solution continuous with the 
cubic spin arrangement we find only a minor loss of point-group symmetry, essentially 
that which is broken by the change in structural group itself. It is to this fact that we 
attribute the stability of the solution which is continuous with the face-centred cubic 
spin arrangement of cubic symmetry. 

When the ‘special’ spin of a different length vanishes, we are left with an essentially 
unique non-collinear but coplanar structure where the spins on the three sublattices 
form an equilateral triangle. This spin state has an obvious triangular symmetry which 
is lost in all but the fluctuations towards the cubic spin arrangement. 

4. The ‘weak-coupling’ Hubbard model 

In the preceding sections we analysed a localised description for MSDW anti- 
ferromagnetism, although we know that for manganese alloys there is experimental 
evidence that an itinerant starting platform might be more reasonable. In this section 
we analyse probably the simplest itinerant model that displays MSDW anti- 
ferromagnetism, the single-band Hubbard model in the Hartree-Fock approximation. 
This model has been much studied previously in this context [24], although the earlier 
motivation has been concerned with the physical properties of different MSDW and 
comparisons between them and not with the problem of impurities, our present 
concern. 
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The Hubbard model is a tight-binding Hamiltonian with two competing terms 

The first term is the hybridisation energy between electrons on neighbouring sites, 
known as the ‘hopping’, and the second term is a short-range repulsion between two 
electrons on the same site. The longer-range Coulomb interaction is assumed screened 
in this description and the Hubbard parameter U is usually assumed of a similar 
magnitude to the ‘hopping’ parameter t ,  in order that the behaviour is not strong 
coupling. For simple magnetic applications a mean-field Hartree-Fock approximation 
is applied to the on-site repulsion term, yielding self-consistently chosen, magnetic 
symmetry-breaking fields, g, = Um,u, on each of the atomic sites, where m, are the 
magnetic moments corresponding directly to the sly of 0 2. The solution to this problem 
is documented in our earlier work [25].  We require the Green function for the present 
work and we relegate this to the Appendix. 

The problem we wish to tackle is that of an impurity atom in the MSDW phases and 
which of the various states is relatively stabilised by its inclusion. We employ a simple 
on-site change in potential on the paramagnetic impurity site: 

A H  = Sjo Sd V601y, 6oj, 6 uo, (4.2) 
where j is a unit-cell label, a is a sublattice label and o is the spin label. 

problem is simply 
The technique we employ is that of Green functions. The Green function for the 

G;’(z)=z - H - A H  (4.3a) 

for the Green function of the system in the presence of the impurity and 

G-’(z) = z - H (4.3b) 

for the Green function of the periodic system in the absence of the impurity. Because 
the impurity is short-range, the solution is best obtained using a short-range potential, 
Z(z), defined by 

(4.4a) GI(z) = G(z)  + G(z)Z(z)G(z) 

Z(Z) = AH + AHG(z)C(z) = [l - AHG(z)]-’AH 
where 

(4.4b) 

which is also necessarily short-range if A H  is. 

The quantity we wish to study is the change in energy at fixed electron number: 

d z  
2x1 

A E  - PAN, = El  - pNI  - ( E  - p N e )  = f - ( z  - p) f ( z  - p )  tr[GI(z) - G(z)] 
C 

where the trace is over the cell, sublattice and spin degrees of freedom, p is the 
chemical potential, f(z) is a Fermi function and the contour, C, captures either the 
poles of the Fermi function or, by Cauchy’s theorem, the real axis. 

Employing the fact that 
dG(z)/dz = (-1)C(z)* (4.6) 



Effects that can stabilise multiple SDW 2869 

we can show that 

where the trace over lattice sites has been performed to leave Go(z) the periodic 
Green function at the impurity site and the residual trace is only over the spin degrees 
of freedom. The spin trace is also straightforward and if we set 

Go(2) = Fo - F * U (4.8) 
where U are the Pauli matrices, then we immediately discover that 

This is a very general formula true for any impurity of form (4.2) in a single-band, 
single-particle potential. For the case of our face-centred cubic MSDW solution we can 
go one stage further and show that 

Fg(Z) = dF(z)/dz (4. loa) 
(4. lob) 

(4.10c) 

where Ak(z) is the simple determinant defined in the Appendix. In the remainder of 
this section we attempt to find the behaviour of this master formula: 

(4.11) 

for the change in energy induced by the impurity level. 

by studying the zeros of 
The energy spectrum and in particular the position of the impurity level is found 

(4.12) 

and by analysing the relative ‘depths’ of the impurities a first pass at the relative 
stabilities of the different MSDW states can be found. 

In general even this subsidiary problem is very difficult, but there are a few simple 
limits which are amenable to analysis. First we consider the limit where the local field 
energy dominates the ‘hopping’ energy, /g /  - C O ,  a limit for which the model is 
admittedly not well suited, but nonetheless some physical insight can be deduced from 
this study. In this limit the energy bands satisfy 

&kot = zg f 

where z and o are k1 and 
(4 .13~)  
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g 2 A i  = + g:s;z + g:s:3 (4.13h) 

and skg are the structure factors for the face-centred cubic lattice (see Appendix) and 
;Ik is the quantity that determines which of the MSDW is relatively stable. The two spin 
states are split on the energy scale g and so we consider each spin state separately. 
For the lower spin state on the impurity we set z = -g + x and then 

(4.14) 

is satisfied by the impurity level. For our nearest-neighbour interactions we find that 
this becomes 

where ci = cos vi. 
First, we can readily solve this perturbatively at large (V/ t )  to determine 

and we immediately deduce that when the chemical potential is in the lower band. 
this argument suggests that the collinear state is stabilised by the impurity. 

Secondly, by analysing the case that the impurity level coincides with the bottom 
of the band, we find that a pure impurity state is found only if 

(4.17) 

and once again this is always satisfied by the collinear arrangement but is a bound on 
the existence of the impurity level for all other spin arrangements. 

We can trace the stability in the collinear spin arrangement back to the dimen- 
sionality of the band structure in this limit. Only for the collinear case is the band 
structure two-dimensional, and it is well known that any attractive potential produces 
a bound state in two dimensions but that in three dimensions there is a minimum size 
to the potential below which it cannot form a bound state. In this limit, the strong 
anisotropy of the collinear phase pulls many states to the bottom of the band which 
can be used in forming the impurity state. If the magnetic potential were much weaker, 
then the impurity would lie in the heart of the band structure where the non-collinear 
arrangement does better energetically. 

The second limit that we consider is that where the magnetic fields are small. 
The degeneracy breaking occurs at fourth order in Igl and so we need to consider 
contributions to this order to break the degeneracy. 

The calculations are straightforward but tedious and we find 
dF/dz = Fo + g2F1 + g'F2 + O(g6) (4.18a) 

w a g ,  = g,[Ho + g2HY + 0(g4)1 (4.18b) 

where the dependence on the MSDW character occurs first at the level of F2 and 
Hf. At this order the impurity level satisfies 

(i/v) - F~ - g2Fl - 8 4 ~ ~  = Lg/H, + 2 Hyg:j + o(g5) (4.19) 
P 
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where we have two solutions corresponding to the different behaviour of the spin in 
the magnetic phase. 

a, in order to obtain a well defined impurity 
level, we find that the impurity level approximately satisfies 

If we analyse the simple limit 1 VI 

1 t g 2 F l ( V )  + g4F2(V) * g(H,(V)  + x g t H y ( V ) ) ]  (4.20) 
P 

and we find two possible ways for the degeneracy to be broken. If only one of the two 
impurity states is filled, we have a magnetic impurity and the degeneracy is broken to 
order g3 and the most stable MSDW state has the maximum value for 

(4.21) 

We would expect both states to be filled in this limit and for this, the paramagnetic 
impurity case, we find that the degeneracy is broken to order g4 but that again the 
most stable MSDW has the maximum value of P(g) .  For our nearest-neighbour hopping, 
we can readily calculate P(g)  and we find 

P(d = + (3/g4)(d + d + g 9 l  (4.22) 

and so once again the collinear phase is favoured. 
For all the limits so far considered, we can argue fairly readily that the collinear 

phase is favoured because more states move towards the band edge than for the non- 
collinear phases. The impurity state can make use of these states to form a more 
localised wavepacket around the impurity site at the same cost in kinetic energy. 
Would we expect this argument to survive for the case of manganese with a moment 
of 2.01~ and five relevant bands? The simple answer is no. The band structures of the 
different MSDW states have very different symmetries and the impurity level is almost 
certainly somewhere in the middle of the band and not beyond the band edge. The 
nickel atom is unlikely to have either a full or empty d shell. In order to study the 
more reasonable physical case, one needs to look at the case where the impurity is a 
resonance in the band. 

An even more disturbing fact is that the Hubbard model has only spin-half orbitals 
on the sites. There is no possibility of weak angular fluctuations in the spin directions 
and so the subtle ideas of § 2 can play no role at all. 

Also when we perform perturbation theory in the impurity potential, we find that 
to leading order we obtain Vn, where ne is the electron density on the impurity site, 
a constant quantity in a one-band model. The spatial symmetry of the orbitals used 
to make up the different MSDW moments are quite different and will couple quite 
differently to the impurity in a many-band system. The effect that seems to be the 
physically most natural for degeneracy breaking is absent from our calculations. 

We therefore feel that the results obtained in this section are probably not 
applicable to manganese, for which a many-band model is required and a more 
carefully defined impurity needs to be considered. 

5. Conclusions 

The basic question tackled in this paper is the following: Which of the different 
degenerate MSDW spin arrangements in frustrated face-centred cubic systems is stabil- 
ised by a paramagnetic impurity? We have in mind the transition-metal manganese, 
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which shows transitions between different such phases upon doping of nickel, which 
is thought to be paramagnetic in this environment. First let us consider the arguments 
about localised spins interacting via the Heisenberg Hamiltonian in the classical limit. 

Quantum fluctuations favour collinear arrangements. The basic reason for this is 
that spin fluctuations are orthogonal to the spin direction in the classical limit. The 
stability of the state of the moving of a particular spin ensures that the field from the 
surrounding spins is parallel to the relevant spin. This in turn ensures that 
the fluctuations are orthogonal to the local field and can gain no energy from the 
Heisenberg interaction. The energy gain comes from the interaction between two 
neighbouring fluctuations and this is largest in the collinear arrangement be- 
cause the fluctuations are coplanar and therefore have a larger overlap on average. 

Quantum impurities favour the non-collinear arrangements. A perturbative argu- 
ment is presented for this. Again, since fluctuations are orthogonal to the spin 
direction, there can only be a linear contribution from the Heisenberg Hamiltonian if 
the local field is not parallel to the relevant spin. In collinear arrangements the local 
fields are always parallel to the special direction and so a linear contribution can only 
be found in non-collinear arrangements. 

There is experimental evidence for Cu3Au ordering of the paramagnetic impurities 
in face-centred cubic manganese. We have therefore analysed the possible spin 
arrangements of this structure, seeking clues as to which phase a denser concentration 
of impurities might favour. We find that when the spin on the ‘Au’ site vanishes the 
spin structure is essentially unique and is a non-collinear arrangement with three 
equal-amplitude spin-density waves, suggesting that local Cu3Au ordering will stabilise 
the cubic MSDW in agreement with the impurity argument. 

If we now move on to itinerant analysis, we find that the itinerant single-band 
Hubbard model suggests that the inclusion of a substitutional paramagnetic impurity 
will stabilise the collinear spin arrangement in direct opposition to the localised case. 
Impurities prefer anisotropy in this analysis because this suggests an effective reduction 
in dimensionality, and the lower the dimension, the more stable an impurity state. 
This result is probably not relevant to manganese, where there are five relevant orbitals 
with different spatial symmetries that couple to a paramagnetic impurity in different 
ways. 

A problem that we have not tackled but do consider interesting is that of the 
classical impurity problem. How do the spins in the classical limit of the Heisenberg 
Hamiltonian arrange themselves about an impurity in the frustrated face-centred cubic 
lattice? The act that spins infinitely far from the impurity are affected makes this a 
hard problem. We conjecture that the solution has the cubic arrangement at infinity. 
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Appendix. The MSDW Green function 

The system has a cubic periodic symmetry together with four atoms per unit cell and 
two spin degrees of freedom. The Green function is therefore an 8 X 8 matrix which 
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is a function of a reciprocal lattice vector, k ,  defined in a cubic Brillouin zone. 

freedom: 
We define two types of 4 X 4 matrices to  represent the sublattice degrees of 

1 0  0 0 0  

Y1 = 1 0  0 0 -1 O 91 y2=[: -; ; :] y 3 =  

0 0 0 - 1  L o  0 0 -1) 

0 0 - 1 0  :-: 0 0 ::I 0 1  

: : :J 0 1 0 0  0 1 (A21 

(AI) 
0 0 0 1  

1 0 0 0  

0 1 0 0  1 0 0 0  

together with yo = cyo = 1 the identity. The algebra that a(, yL satisfy is interchangeable 
under a fs y and so we may choose a basis where either the ai or yi are diagonal. 

We define the Green function in terms of 
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c3 = s k l s k Z s k 3  
and the contribution which breaks the MSDW symmetry 

It is straightforward to see that the determinant, A k ( z ) ,  vanishes when z coincides 
with an eigenvalue and direct differentiation leads to the results (4.10), which underpin 
a 4. 
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